organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

O-(tert-Butyldimethylsilyl)tris(O-4methylphenylsulfonyl)pentaerythritol

Shu-Xian Li,^{a,b} Hua-Min Li,^a Zhong-Lin Lu,^a‡ Hoong-Kun Fun^{c*} and Suchada Chantrapromma^d§

^aDepartment of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China, ^bDepartment of Chemistry, Handan College, Handan, Hebei 056005, People's Republic of China, ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^dCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand Correspondence e-mail: hkfun@usm.my

Received 27 June 2008; accepted 8 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.128; data-to-parameter ratio = 24.8.

In the title compound [systematic name: (tert-butyldimethylsilyl)methanetriyl tris(4-methylbenzenesulfonate)], C₃₂H₄₄- $O_{10}S_3S_i$, the central C atom and the Si^{IV} center are in a tetrahedral configuration. The interplanar angles between pairs of the three benzene rings of the 4-methylphenylsulfonyl units are 41.15 (10), 18.11 (10) and 44.09 (10)°. $C-H\cdots\pi$ interactions are observed in the crystal structure. Molecules are linked into screw chains along the b axis by weak C- $H \cdots O$ interactions. Weak intramolecular $C - H \cdots O$ hydrogen bonds are also present.

Related literature

For bond-length data, see: Allen et al. (1987). For background and applications of radioimmuno imaging, radioimmuno therapy and hypoxia markers, see, for example: Abdel-Jalil et al. (2006); Monge et al. (2001); Nagasawa et al. (2006).

Experimental

Crystal data

β

C22H44O10S2Si	$V = 3604.17(11) \text{ Å}^3$
$M_r = 712.94$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 19.0551 (3) Å	$\mu = 0.29 \text{ mm}^{-1}$
b = 16.4726 (3) Å	T = 100.0 (1) K
c = 11.6751 (2) Å	$0.51 \times 0.22 \times 0.21 \text{ mm}$
$\beta = 100.425 \ (1)^{\circ}$	

45850 measured reflections

 $R_{\rm int} = 0.061$

423 parameters

 $\Delta \rho_{\rm max} = 0.57 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$

10507 independent reflections

7229 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection

Bruker SMART APEX2 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.865, T_{\max} = 0.941$

Refinement

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C2-H2A\cdots O5^{i}$	0.97	2.57	3.133 (2)	117
$C2-H2B\cdots O2$	0.97	2.56	2.902 (2)	101
$C4 - H4A \cdots O6^{i}$	0.93	2.54	3.446 (3)	166
C10−H10B····O1	0.97	2.50	2.856 (2)	102
C10−H10B····O6	0.97	2.54	2.955 (2)	106
C16-H16A···O5	0.93	2.51	2.896 (3)	105
$C17 - H17C \cdot \cdot \cdot O3^{ii}$	0.96	2.46	3.361 (3)	156
C18-H18A···O4	0.97	2.46	2.799 (2)	100
$C18-H18B\cdots O5^{i}$	0.97	2.47	3.056 (2)	119
C20-H20A···O9	0.93	2.53	2.907 (2)	104
$C24 - H24A \cdots O9^{iii}$	0.93	2.45	3.251 (2)	144
$C25-H25B\cdots O8^{iv}$	0.96	2.56	3.271 (3)	131
$C26-H26B\cdots O7$	0.97	2.45	2.851 (2)	105
$C29-H29E\cdots O9^{v}$	0.96	2.55	3.504 (3)	172
$C28-H28D\cdots Cg1^{vi}$	0.96	3.25	3.888 (3)	125

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) $-x, y + \frac{1}{2}, -z + \frac{3}{2}; (v) - x, -y + 1, -z + 1; (vi) - x, y - \frac{1}{2}, -z + \frac{3}{2}; Cg1$ is the centroid of the C19–C24 ring.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors gratefully acknowledge the financial assistance of Beijing Normal University. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2586).

[‡] Additional correspondence author, e-mail:luzl@bnu.edu.cn.

[§] Additional correspondence author, e-mail: suchada.c@psu.ac.th.

References

- Abdel-Jalil, R. J. M., Übele, M., Ehrlichmann, W., Voelter, W. & Machulla, H. J. (2006). J. Radioanal. Nucl. Chem. 267, 557–560.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Monge, S., Selambarom, J., Roque, J. P. & Pavia, A. (2001). Tetrahedron, 57, 9979–9987.
- Nagasawa, H., Uto, Y., Kirk, K. L. & Hori, H. (2006). Biol. Pharm. Bull. 29, 2335–2342.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2008). E64, o1472-o1473 [doi:10.1107/S160053680802117X]

O-(tert-Butyldimethylsilyl)tris(O-4-methylphenylsulfonyl)pentaerythritol

S.-X. Li, H.-M. Li, Z.-L. Lu, H.-K. Fun and S. Chantrapromma

Comment

Radio-immuno-imaging (RII) and radio-immuno-therapy (RIT) rely on the ability of a bifunctional molecule with a radioactive unit combined with a receptor-specific substrate such as 2-nitroimidazole unit which can act as a hypoxia marker (Abdel-Jalil *et al.*, 2006; Monge *et al.*, 2001; Nagasawa *et al.*, 2006). This approach allows radiopharmaceuticals to be delivered specifically to malignant tissue while minimizing the risk of unspecific irradiation of sane tissue. As part of our research on the synthesis of new potential hypoxia markers, we report herein the synthesis and crystal structure of the *O*-(*tert*-Butyl- dimethylsilyl)-tris[*O*-(4-methylphenylsulfonyl)]-pentaerythritol (I)

In the title molecule (Fig. 1), the configurations of the Si^V and central C atoms are tetrahedral. The interplanar angles between the three phenyl rings of the three 4-methylphenylsulfonyl group are 41.15 (10)°, 18.11 (10)° and 44.09 (10)° for *A/B*, *A/C* and *B/C*, respectively, where ring A is C3–C8, ring B is C11–C16 and ring C is C19–C24. Atoms O1, O7, C1, C2 and C18 lie on the same plane, with the most deviation of 0.011 (2) Å for atom C1. The dihedral angles between the O1/O7/C1/C2/C18 plane and the mean plane of phenyl rings *A*, *B* and *C* are 71.26 (12)°, 55.52 (12)° and 86.79 (13)°, respectively. The conformation of the three 4-methylphenylsulfonyl groups with respect to the pentaerythritol unit, (C1/C2/C10/C18/C26/O1/O4/O7/O10), can be indicated by the torsion angles S1–O1–C2–C1 = -172.71 (11)°, S2–O4–C10–C1 = -155.23 (12)° and S3–O7–C18–C1 = -168.07 (11)°.

The crystal packing of (I) in Fig. 2 shows that the molecules are linked into screw chains along the *b* axis by weak C17—H17C···O3 (symmetry code: 1 - x, 1/2 + y, 3/2 - z) and C25—H25B···O8 (symmetry code:-x, 1/2 + y, 3/2 - z) interactions (Table 1). The crystal is stabilized by weak C—H···O intra- and intermolecular interactions (Table 1) and further stabilized by C—H··· π interactions (Table 1); *Cg*1 is the centroid of C19–C24 ring.

Experimental

The title compound was synthesized by disolving the 2,2-hydroxymethyl-2-(*tert*-butyldimethylsilyloxymethyl)-propan-1,3diol (1.05 g, 4.0 mmol) in dry pyridine (40 ml) and tosyl chloride (3.05 g, 16.0 mmol) was then added. The reaction mixture was stirred for 24 h at room temperature, after which it was poured into ice-water (250 ml) and extracted with CH_2Cl_2 (250 ml). The organic layer was washed with water (250 ml), dried with MgSO₄ and concentrated. The solid residue was purified by recrystalization with warm ethanol to afford the title compound as a white solid 2.27 g (yield: 80%). Colourless single crystals of the title compound suitable for *x*-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature [m.p. 371 K].

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic, C—H = 0.97 Å, $U_{iso} = 1.2U_{eq}(C)$ for CH₂ and C—H = 0.96 Å, $U_{iso} = 1.5U_{eq}(C)$ for CH₃ atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Fig. 2. The crystal packing of (I), viewed down the c axis, showing screw chains running along the b axis. Hydrogen bonds are shown as dashed lines.

(tert-butyldimethylsilyl)methanetriyl tris(4-methylbenzenesulfonate)

$F_{000} = 1512$
$D_{\rm x} = 1.314 {\rm ~Mg~m}^{-3}$
Melting point: 371 K
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 10507 reflections
$\theta = 1.1 - 30.0^{\circ}$
$\mu = 0.29 \text{ mm}^{-1}$
T = 100.0 (1) K
Block, colourless
$0.51\times0.22\times0.21~mm$

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer	10507 independent reflections
Radiation source: fine-focus sealed tube	7229 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.061$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 30.0^{\circ}$
T = 100.0(1) K	$\theta_{\min} = 1.1^{\circ}$
ω scans	$h = -26 \rightarrow 26$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -20 \rightarrow 23$

$T_{\min} = 0.865, T_{\max} = 0.941$	$l = -16 \rightarrow 16$
45850 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.128$	$w = 1/[\sigma^2(F_0^2) + (0.0542P)^2 + 0.5781P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
10507 reflections	$\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$
423 parameters	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Experimental. The low-temparture data was collected with the Oxford Cryosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
S1	0.43907 (2)	0.59668 (3)	0.80628 (4)	0.02743 (12)
S2	0.29545 (3)	0.84432 (3)	0.88867 (4)	0.02536 (11)
S3	0.04614 (2)	0.70517 (3)	0.62782 (4)	0.02418 (11)
Si1	0.15861 (3)	0.41864 (3)	0.71109 (5)	0.02434 (12)
01	0.35890 (7)	0.60108 (8)	0.82612 (11)	0.0251 (3)
O2	0.45358 (7)	0.66628 (9)	0.74133 (12)	0.0322 (3)
O3	0.47849 (7)	0.58293 (10)	0.92048 (12)	0.0360 (4)
O4	0.25506 (7)	0.77595 (7)	0.80747 (11)	0.0255 (3)
O5	0.24793 (8)	0.87813 (9)	0.95759 (12)	0.0346 (3)
O6	0.36172 (8)	0.81218 (9)	0.94769 (13)	0.0364 (4)
O7	0.11116 (6)	0.66522 (8)	0.71203 (11)	0.0231 (3)
O8	-0.01360 (7)	0.68777 (9)	0.68183 (13)	0.0350 (3)
O9	0.04655 (7)	0.67929 (8)	0.51126 (12)	0.0306 (3)
O10	0.22073 (7)	0.48853 (7)	0.75227 (11)	0.0237 (3)
C1	0.23508 (9)	0.63386 (10)	0.77255 (15)	0.0201 (3)

C2	0.30457 (9)	0.62322 (11)	0.72675 (15)	0.0218 (4)
H2A	0.2995	0.5809	0.6681	0.026*
H2B	0.3174	0.6734	0.6922	0.026*
C3	0.44109 (10)	0.50976 (12)	0.72072 (17)	0.0271 (4)
C4	0.42767 (10)	0.51678 (13)	0.60011 (17)	0.0292 (4)
H4A	0.4179	0.5672	0.5650	0.035*
C5	0.42907 (11)	0.44783 (13)	0.53309 (19)	0.0323 (5)
H5A	0.4194	0.4523	0.4524	0.039*
C6	0.44467 (10)	0.37191 (13)	0.5836 (2)	0.0342 (5)
C7	0.45830 (11)	0.36682 (14)	0.7042 (2)	0.0385 (5)
H7A	0.4691	0.3166	0.7393	0.046*
C8	0.45632 (11)	0.43424 (13)	0.77347 (19)	0.0345 (5)
H8A	0.4650	0.4295	0.8542	0.041*
C9	0.44730 (13)	0.29802 (14)	0.5085 (2)	0.0472 (6)
H9A	0.4627	0.2520	0.5571	0.071*
H9B	0.4802	0.3073	0.4566	0.071*
H9C	0.4007	0.2877	0.4640	0.071*
C10	0.24235 (10)	0.69985 (10)	0.86520 (16)	0.0226 (4)
H10A	0.1991	0.7036	0.8977	0.027*
H10B	0.2819	0.6879	0.9277	0.027*
C11	0.30845 (10)	0.91365 (11)	0.78179 (16)	0.0241 (4)
C12	0.35159 (11)	0.89374 (13)	0.70172 (17)	0.0297 (4)
H12A	0.3732	0.8430	0.7038	0.036*
C13	0.36207 (11)	0.95052 (13)	0.61867 (18)	0.0312 (4)
H13A	0.3904	0.9373	0.5644	0.037*
C14	0.33077 (10)	1.02698 (12)	0.61554 (17)	0.0296 (4)
C15	0.28933 (12)	1.04578 (13)	0.6978 (2)	0.0366 (5)
H15A	0.2690	1.0971	0.6975	0.044*
C16	0.27748 (12)	0.98965 (12)	0.78057 (19)	0.0335 (5)
H16A	0.2490	1.0029	0.8347	0.040*
C17	0.34224 (12)	1.08795 (14)	0.5246 (2)	0.0377 (5)
H17A	0.3133	1.1350	0.5301	0.057*
H17B	0.3291	1.0643	0.4487	0.057*
H17C	0.3916	1.1035	0.5372	0.057*
C18	0.17788 (9)	0.65611 (11)	0.66832 (15)	0.0205 (4)
H18A	0.1901	0.7065	0.6336	0.025*
H18B	0.1734	0.6137	0.6098	0.025*
C19	0.06525 (10)	0.80900 (11)	0.63863 (17)	0.0249 (4)
C20	0.06732 (12)	0.85348 (12)	0.53912 (18)	0.0352 (5)
H20A	0.0617	0.8282	0.4668	0.042*
C21	0.07791 (14)	0.93662 (13)	0.5490 (2)	0.0439 (6)
H21A	0.0790	0.9672	0.4823	0.053*
C22	0.08685 (12)	0.97525 (13)	0.6565 (2)	0.0373 (5)
C23	0.08474 (12)	0.92879 (13)	0.75492 (19)	0.0352 (5)
H23A	0.0910	0.9537	0.8275	0.042*
C24	0.07355 (11)	0.84620 (12)	0.74651 (18)	0.0308 (4)
H24A	0.0716	0.8157	0.8129	0.037*
C25	0.09677 (14)	1.06606 (13)	0.6661 (2)	0.0502 (7)
H25A	0.1296	1.0788	0.7363	0.075*

H25B	0.0517	1.0915	0.6680	0.075*
H25C	0.1154	1.0857	0.6002	0.075*
C26	0.21518 (10)	0.55424 (10)	0.82791 (15)	0.0216 (4)
H26A	0.2469	0.5456	0.9017	0.026*
H26B	0.1668	0.5578	0.8426	0.026*
C27	0.20588 (11)	0.33913 (12)	0.63907 (19)	0.0321 (5)
C28	0.12636 (13)	0.37836 (14)	0.8409 (2)	0.0406 (5)
H28D	0.0947	0.4171	0.8663	0.061*
H28E	0.1663	0.3689	0.9024	0.061*
H28F	0.1013	0.3283	0.8211	0.061*
C29	0.08257 (12)	0.46319 (13)	0.6089 (2)	0.0418 (6)
H29D	0.0614	0.5058	0.6474	0.063*
H29E	0.0476	0.4219	0.5839	0.063*
H29F	0.0993	0.4850	0.5425	0.063*
C30	0.23327 (17)	0.37496 (18)	0.5347 (2)	0.0607 (8)
H28A	0.2574	0.3336	0.4988	0.091*
H28B	0.2658	0.4185	0.5605	0.091*
H28C	0.1938	0.3954	0.4793	0.091*
C31	0.26994 (13)	0.30612 (15)	0.7265 (3)	0.0537 (7)
H29A	0.2944	0.2659	0.6890	0.081*
H29B	0.2533	0.2821	0.7915	0.081*
H29C	0.3020	0.3498	0.7534	0.081*
C32	0.15490 (13)	0.26888 (14)	0.5985 (2)	0.0460 (6)
H30A	0.1803	0.2264	0.5671	0.069*
H30B	0.1166	0.2878	0.5395	0.069*
H30C	0.1358	0.2483	0.6634	0.069*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0203 (2)	0.0361 (3)	0.0249 (2)	-0.00249 (19)	0.00168 (19)	0.0038 (2)
S2	0.0322 (3)	0.0219 (2)	0.0211 (2)	-0.00499 (18)	0.00224 (19)	-0.00392 (18)
S3	0.0212 (2)	0.0247 (2)	0.0258 (2)	0.00012 (17)	0.00182 (18)	0.00147 (18)
Si1	0.0269 (3)	0.0195 (2)	0.0257 (3)	-0.0037 (2)	0.0020 (2)	0.0008 (2)
01	0.0210 (6)	0.0326 (7)	0.0207 (6)	0.0006 (5)	0.0015 (5)	0.0045 (6)
O2	0.0303 (7)	0.0351 (8)	0.0309 (7)	-0.0093 (6)	0.0048 (6)	0.0038 (6)
O3	0.0250 (7)	0.0525 (10)	0.0276 (7)	0.0001 (6)	-0.0030 (6)	0.0058 (7)
O4	0.0355 (7)	0.0178 (6)	0.0209 (6)	-0.0054 (5)	-0.0007 (6)	-0.0012 (5)
O5	0.0491 (9)	0.0306 (8)	0.0275 (7)	-0.0038 (7)	0.0163 (7)	-0.0046 (6)
O6	0.0366 (8)	0.0333 (8)	0.0342 (8)	-0.0071 (6)	-0.0071 (7)	0.0011 (7)
O7	0.0206 (6)	0.0270 (7)	0.0217 (6)	0.0029 (5)	0.0040 (5)	0.0027 (5)
O8	0.0236 (7)	0.0365 (8)	0.0461 (9)	-0.0015 (6)	0.0097 (6)	0.0051 (7)
O9	0.0334 (8)	0.0298 (7)	0.0254 (7)	0.0004 (6)	-0.0032 (6)	-0.0028 (6)
O10	0.0253 (7)	0.0189 (6)	0.0267 (7)	-0.0022 (5)	0.0041 (5)	-0.0032 (5)
C1	0.0223 (9)	0.0195 (8)	0.0180 (8)	-0.0011 (7)	0.0019 (7)	-0.0001 (7)
C2	0.0208 (9)	0.0237 (9)	0.0197 (9)	-0.0002 (7)	0.0003 (7)	0.0028 (7)
C3	0.0203 (9)	0.0332 (10)	0.0280 (10)	0.0024 (8)	0.0052 (8)	0.0054 (8)
C4	0.0251 (10)	0.0319 (10)	0.0311 (10)	0.0017 (8)	0.0064 (8)	0.0065 (9)

C5	0.0285 (10)	0.0345 (11)	0.0348 (11)	0.0018 (8)	0.0079 (9)	0.0015 (9)
C6	0.0219 (10)	0.0341 (11)	0.0476 (13)	0.0011 (8)	0.0087 (9)	0.0018 (10)
C7	0.0315 (11)	0.0320 (11)	0.0523 (14)	0.0056 (9)	0.0080 (10)	0.0128 (10)
C8	0.0285 (11)	0.0398 (12)	0.0342 (11)	0.0030 (9)	0.0034 (9)	0.0123 (9)
C9	0.0420 (13)	0.0352 (12)	0.0650 (17)	0.0000 (10)	0.0111 (12)	-0.0033 (12)
C10	0.0274 (9)	0.0193 (8)	0.0203 (9)	-0.0030(7)	0.0023 (7)	0.0020 (7)
C11	0.0259 (9)	0.0223 (9)	0.0237 (9)	-0.0044 (7)	0.0033 (8)	-0.0037 (7)
C12	0.0295 (10)	0.0291 (10)	0.0305 (10)	0.0031 (8)	0.0057 (8)	-0.0007 (8)
C13	0.0293 (10)	0.0376 (11)	0.0281 (10)	0.0026 (9)	0.0089 (8)	0.0018 (9)
C14	0.0257 (10)	0.0321 (10)	0.0295 (10)	-0.0073 (8)	0.0007 (8)	0.0009 (9)
C15	0.0427 (12)	0.0224 (10)	0.0469 (13)	0.0005 (9)	0.0139 (10)	0.0020 (9)
C16	0.0431 (12)	0.0240 (10)	0.0377 (12)	-0.0004 (9)	0.0193 (10)	-0.0032 (9)
C17	0.0345 (12)	0.0372 (12)	0.0402 (12)	-0.0077 (9)	0.0039 (10)	0.0097 (10)
C18	0.0211 (9)	0.0200 (8)	0.0205 (8)	0.0004 (7)	0.0040 (7)	0.0002 (7)
C19	0.0245 (9)	0.0240 (9)	0.0268 (10)	0.0042 (7)	0.0066 (8)	0.0004 (8)
C20	0.0541 (14)	0.0270 (10)	0.0282 (11)	0.0088 (9)	0.0177 (10)	0.0017 (8)
C21	0.0711 (17)	0.0256 (11)	0.0428 (13)	0.0050 (11)	0.0312 (13)	0.0046 (10)
C22	0.0398 (12)	0.0273 (11)	0.0489 (13)	0.0036 (9)	0.0187 (11)	-0.0034 (10)
C23	0.0397 (12)	0.0329 (11)	0.0330 (11)	0.0020 (9)	0.0066 (10)	-0.0075 (9)
C24	0.0367 (11)	0.0299 (10)	0.0256 (10)	0.0012 (8)	0.0052 (9)	-0.0002 (8)
C25	0.0618 (16)	0.0251 (11)	0.0679 (18)	0.0025 (11)	0.0229 (14)	-0.0057 (11)
C26	0.0264 (9)	0.0196 (8)	0.0185 (8)	-0.0022 (7)	0.0029 (7)	0.0001 (7)
C27	0.0335 (11)	0.0269 (10)	0.0354 (11)	-0.0041 (8)	0.0046 (9)	-0.0093 (9)
C28	0.0474 (14)	0.0353 (12)	0.0417 (13)	-0.0123 (10)	0.0146 (11)	0.0011 (10)
C29	0.0366 (12)	0.0289 (11)	0.0534 (14)	-0.0051 (9)	-0.0094 (11)	0.0037 (10)
C30	0.081 (2)	0.0573 (17)	0.0529 (16)	-0.0102 (15)	0.0374 (15)	-0.0153 (14)
C31	0.0426 (14)	0.0424 (14)	0.0708 (18)	0.0112 (11)	-0.0043 (13)	-0.0224 (13)
C32	0.0474 (14)	0.0300 (12)	0.0576 (15)	-0.0050 (10)	0.0016 (12)	-0.0173 (11)

Geometric parameters (Å, °)

S1—O3	1.4250 (14)	C13—C14	1.391 (3)
S1—O2	1.4289 (14)	C13—H13A	0.9300
S1—O1	1.5875 (13)	C14—C15	1.385 (3)
S1—C3	1.750 (2)	C14—C17	1.505 (3)
S2—O6	1.4265 (15)	C15—C16	1.385 (3)
S2—O5	1.4288 (14)	C15—H15A	0.9300
S2—O4	1.5797 (13)	C16—H16A	0.9300
S2—C11	1.7420 (19)	C17—H17A	0.9600
S3—O8	1.4266 (14)	C17—H17B	0.9600
S3—O9	1.4274 (14)	C17—H17C	0.9600
S3—O7	1.5791 (13)	C18—H18A	0.9700
S3—C19	1.7484 (19)	C18—H18B	0.9700
Si1—O10	1.6588 (13)	C19—C20	1.380 (3)
Si1—C29	1.854 (2)	C19—C24	1.384 (3)
Si1—C28	1.858 (2)	C20—C21	1.386 (3)
Si1—C27	1.873 (2)	C20—H20A	0.9300
O1—C2	1.455 (2)	C21—C22	1.390 (3)
O4—C10	1.464 (2)	C21—H21A	0.9300

07—C18	1 461 (2)	C22—C23	1 387 (3)
010	1.413 (2)	C22—C25	1.509 (3)
C1—C10	1 522 (2)	C23—C24	1 378 (3)
C1—C18	1 524 (2)	C23—H23A	0.9300
C1-C2	1 525 (2)	C24—H24A	0.9300
C1 - C26	1 540 (2)	C25—H25A	0.9600
C2—H2A	0.9700	C25—H25B	0.9600
С2—Н2В	0 9700	C25—H25C	0 9600
C3—C4	1.390 (3)	C26—H26A	0.9700
C3—C8	1.395 (3)	C26—H26B	0.9700
C4—C5	1.382 (3)	C27—C30	1.528 (3)
C4—H4A	0.9300	C27—C32	1 530 (3)
C5—C6	1.392 (3)	C27—C31	1.542 (3)
С5—Н5А	0.9300	C28—H28D	0.9600
C6—C7	1 388 (3)	C28—H28E	0.9600
C6—C9	1.506 (3)	C28—H28F	0.9600
C7—C8	1 378 (3)	C29—H29D	0.9600
С7—Н7А	0.9300	C29—H29E	0.9600
C8—H8A	0.9300	C29—H29F	0.9600
С9—Н9А	0.9600	C30—H28A	0.9600
С9—Н9В	0.9600	C30—H28B	0.9600
С9—Н9С	0.9600	C30—H28C	0.9600
C10—H10A	0.9700	C31—H29A	0.9600
C10—H10B	0.9700	C31—H29B	0.9600
C11—C16	1.383 (3)	C31—H29C	0.9600
C11-C12	1.391 (3)	C32—H30A	0.9600
C12—C13	1.387 (3)	C32—H30B	0.9600
C12—H12A	0.9300	C32—H30C	0.9600
03-\$1-02	120 27 (9)	C14-C15-H15A	1193
03 - 51 - 01	120.27(9) 103 23 (8)	C16-C15-H15A	119.3
02 - 81 - 01	108.94 (8)	$C_{11} - C_{16} - C_{15}$	119.24 (19)
03 - 81 - 03	109.98 (9)	$C_{11} - C_{16} - H_{16A}$	120.4
02 - 81 - 03	109.09 (9)	C15-C16-H16A	120.1
01 - 81 - 03	104.00 (8)	C_{14} C_{17} H_{17A}	109.5
06-82-05	117 94 (9)	C14—C17—H17B	109.5
06-52-04	108 54 (8)	H17A_C17_H17B	109.5
05-82-04	109.04 (8)	C14 - C17 - H17C	109.5
06 - 82 - C11	111 17 (9)	H17A - C17 - H17C	109.5
05	109 55 (9)	H17B_C17_H17C	109.5
04 = 82 = C11	98 89 (8)	07-018-01	109.5
08-53-09	120 25 (9)	07 - C18 - H184	110.4
08-53-07	103 88 (8)	C1 - C18 - H18A	110.4
09-83-07	109.27 (8)	07-C18-H18B	110.4
08 - 53 - C19	109.27 (0)	C1 - C18 - H18B	110.4
09 - 53 - C19	109.09 (9)	H18A - C18 - H18B	108.6
07-83-019	103 48 (8)	C_{20} C_{19} C_{24}	121.00 (19)
010—Si1—C29	110.21 (9)	C20-C19-S3	119.73 (15)
010 - Si1 - C28	109 60 (9)	C_{24} C_{19} S_{3}	119 14 (15)
C29—Si1—C28	109.34 (12)	C19—C20—C21	118.7 (2)

O10—Si1—C27	103.86 (8)	C19—C20—H20A	120.6
C29—Si1—C27	111.79 (11)	C21—C20—H20A	120.6
C28—Si1—C27	111.93 (10)	C20—C21—C22	121.3 (2)
C2—O1—S1	117.37 (11)	C20—C21—H21A	119.4
C10—O4—S2	115.94 (11)	C22—C21—H21A	119.4
C18—O7—S3	117.36 (11)	C23—C22—C21	118.6 (2)
C26—O10—Si1	125.64 (11)	C23—C22—C25	120.5 (2)
C10-C1-C18	110.83 (14)	C21—C22—C25	120.9 (2)
C10—C1—C2	110.97 (15)	C24—C23—C22	120.9 (2)
C18—C1—C2	106.77 (14)	C24—C23—H23A	119.6
C10-C1-C26	107.92 (14)	C22—C23—H23A	119.6
C18—C1—C26	110.20 (14)	C23—C24—C19	119.5 (2)
C2—C1—C26	110.16 (14)	C23—C24—H24A	120.2
O1—C2—C1	106.68 (13)	C19—C24—H24A	120.2
O1—C2—H2A	110.4	C22—C25—H25A	109.5
C1—C2—H2A	110.4	C22—C25—H25B	109.5
O1—C2—H2B	110.4	H25A—C25—H25B	109.5
C1—C2—H2B	110.4	C22—C25—H25C	109.5
H2A—C2—H2B	108.6	H25A—C25—H25C	109.5
C4—C3—C8	120.46 (19)	H25B—C25—H25C	109.5
C4—C3—S1	119.42 (15)	O10—C26—C1	109.77 (14)
C8—C3—S1	120.12 (16)	O10—C26—H26A	109.7
C5—C4—C3	119.10 (19)	C1—C26—H26A	109.7
C5—C4—H4A	120.5	O10—C26—H26B	109.7
C3—C4—H4A	120.5	C1—C26—H26B	109.7
C4—C5—C6	121.6 (2)	H26A—C26—H26B	108.2
C4—C5—H5A	119.2	C30—C27—C32	109.5 (2)
С6—С5—Н5А	119.2	C_{30} C_{27} C_{31}	108.7(2)
C7—C6—C5	118.1 (2)	C_{32} C_{27} C_{31}	108.70 (19)
C7—C6—C9	121.5 (2)	C30—C27—Si1	110.44 (16)
C5-C6-C9	120 5 (2)	C_{32} — C_{27} —Sil	109 76 (15)
C8 - C7 - C6	121.8 (2)	C_{31} C_{27} S_{11}	109.69 (15)
C8—C7—H7A	119.1	Si1—C28—H28D	109.5
С6—С7—Н7А	119.1	Si1—C28—H28E	109.5
C7 - C8 - C3	119.0 (2)	H_{28D} C_{28} H_{28E}	109.5
C7—C8—H8A	120.5	Si1-C28-H28F	109.5
$C_3 - C_8 - H_8 A$	120.5	H_{28D} C_{28} H_{28F}	109.5
C6-C9-H9A	109.5	H28FC28H28F	109.5
С6—С9—Н9В	109.5	Si1-C29-H29D	109.5
H9A_C9_H9B	109.5	Si1-C29-H29E	109.5
C6-C9-H9C	109.5	H_{29D} C_{29} H_{29F}	109.5
H9A - C9 - H9C	109.5	Si1H29F	109.5
H9B-C9-H9C	109.5	$H_{29} - C_{29} - H_{29}F$	109.5
04	106.60 (14)	H29E - C29 - H29F	109.5
O4— $C10$ — $H10A$	110.4	C27 - C30 - H28A	109.5
C1 - C10 - H10A	110.4	C27—C30—H28B	109.5
04—C10—H10B	110.4	H28A—C30—H28B	109.5
C1—C10—H10B	110.4	C_{27} C_{30} H_{28C}	109.5
H10A—C10—H10B	108.6	H28A—C30—H28C	109.5
			~ ~ • •

C16—C11—C12	120.62 (18)	H28B—C30—H28C	109.5
C16—C11—S2	119.02 (15)	C27—C31—H29A	109.5
C12—C11—S2	120.32 (15)	С27—С31—Н29В	109.5
C13—C12—C11	119.21 (19)	H29A—C31—H29B	109.5
C13—C12—H12A	120.4	С27—С31—Н29С	109.5
C11—C12—H12A	120.4	H29A—C31—H29C	109.5
C12—C13—C14	120.89 (19)	H29B—C31—H29C	109.5
C12—C13—H13A	119.6	С27—С32—Н30А	109.5
C14—C13—H13A	119.6	С27—С32—Н30В	109.5
C15-C14-C13	118.68 (19)	H30A—C32—H30B	109.5
C15-C14-C17	120.91 (19)	С27—С32—Н30С	109.5
C13—C14—C17	120.41 (19)	H30A—C32—H30C	109.5
C14—C15—C16	121.34 (19)	H30B—C32—H30C	109.5
O3—S1—O1—C2	173.78 (13)	S2-C11-C12-C13	-178.92 (15)
02—S1—O1—C2	44.86 (14)	C11—C12—C13—C14	0.8 (3)
C3—S1—O1—C2	-71.37 (14)	C12-C13-C14-C15	0.6 (3)
O6—S2—O4—C10	56.27 (14)	C12-C13-C14-C17	-179.71 (19)
O5—S2—O4—C10	-73.41 (14)	C13-C14-C15-C16	-1.4 (3)
C11—S2—O4—C10	172.24 (13)	C17—C14—C15—C16	178.9 (2)
O8—S3—O7—C18	166.39 (12)	C12-C11-C16-C15	0.6 (3)
O9—S3—O7—C18	36.88 (14)	S2-C11-C16-C15	178.17 (16)
C19—S3—O7—C18	-79.02 (13)	C14—C15—C16—C11	0.8 (3)
C29—Si1—O10—C26	71.63 (16)	S3—O7—C18—C1	168.07 (11)
C28—Si1—O10—C26	-48.75 (16)	C10-C1-C18-O7	-59.77 (18)
C27—Si1—O10—C26	-168.49 (14)	C2-C1-C18-O7	179.26 (13)
S1—O1—C2—C1	-172.71 (11)	C26—C1—C18—O7	59.62 (17)
C10-C1-C2-O1	59.75 (18)	O8—S3—C19—C20	-124.09 (17)
C18—C1—C2—O1	-179.37 (13)	O9—S3—C19—C20	9.39 (19)
C26—C1—C2—O1	-59.71 (18)	O7—S3—C19—C20	125.55 (17)
O3—S1—C3—C4	-158.68 (15)	O8—S3—C19—C24	51.81 (18)
O2—S1—C3—C4	-24.77 (18)	O9—S3—C19—C24	-174.70 (15)
O1—S1—C3—C4	91.34 (16)	O7—S3—C19—C24	-58.54 (17)
O3—S1—C3—C8	21.08 (19)	C24—C19—C20—C21	0.0 (3)
O2—S1—C3—C8	154.99 (15)	S3—C19—C20—C21	175.80 (18)
O1—S1—C3—C8	-88.89 (17)	C19—C20—C21—C22	0.4 (4)
C8—C3—C4—C5	0.5 (3)	C20—C21—C22—C23	-0.2 (4)
S1—C3—C4—C5	-179.74 (15)	C20—C21—C22—C25	-178.7 (2)
C3—C4—C5—C6	-1.0 (3)	C21—C22—C23—C24	-0.4 (3)
C4—C5—C6—C7	0.6 (3)	C25—C22—C23—C24	178.0 (2)
C4—C5—C6—C9	-178.76 (19)	C22—C23—C24—C19	0.9 (3)
C5—C6—C7—C8	0.3 (3)	C20—C19—C24—C23	-0.6 (3)
C9—C6—C7—C8	179.7 (2)	S3—C19—C24—C23	-176.47 (16)
C6—C7—C8—C3	-0.8 (3)	Si1-010-C26-C1	-129.79 (13)
C4—C3—C8—C7	0.4 (3)	C10-C1-C26-O10	-169.26 (14)
S1—C3—C8—C7	-179.36 (16)	C18—C1—C26—O10	69.59 (18)
S2—O4—C10—C1	-155.23 (12)	C2—C1—C26—O10	-47.96 (19)
C18—C1—C10—O4	-54.42 (18)	O10—Si1—C27—C30	-60.39 (18)
C2-C1-C10-O4	64.04 (18)	C29—Si1—C27—C30	58.41 (19)
C26—C1—C10—O4	-175.17 (14)	C28—Si1—C27—C30	-178.54 (17)

O6—S2—C11—C16	-128.23 (17)	O10—Si1—C27—C32	178.73 (15)
O5—S2—C11—C16	3.90 (19)	C29—Si1—C27—C32	-62.47 (19)
O4—S2—C11—C16	117.85 (17)	C28—Si1—C27—C32	60.58 (19)
O6—S2—C11—C12	49.36 (18)	O10—Si1—C27—C31	59.37 (17)
O5—S2—C11—C12	-178.51 (15)	C29—Si1—C27—C31	178.17 (16)
O4—S2—C11—C12	-64.57 (17)	C28—Si1—C27—C31	-58.78 (19)
C16-C11-C12-C13	-1.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C2—H2A···O5 ⁱ	0.97	2.57	3.133 (2)	117
C2—H2B…O2	0.97	2.56	2.902 (2)	101
C4—H4A····O6 ⁱ	0.93	2.54	3.446 (3)	166
C10—H10B…O1	0.97	2.50	2.856 (2)	102
C10—H10B…O6	0.97	2.54	2.955 (2)	106
C16—H16A…O5	0.93	2.51	2.896 (3)	105
C17—H17C···O3 ⁱⁱ	0.96	2.46	3.361 (3)	156
C18—H18A…O4	0.97	2.46	2.799 (2)	100
C18—H18B···O5 ⁱ	0.97	2.47	3.056 (2)	119
С20—Н20А…О9	0.93	2.54	2.907 (2)	104
C24—H24A···O9 ⁱⁱⁱ	0.93	2.45	3.251 (2)	144
C25—H25B···O8 ^{iv}	0.96	2.57	3.271 (3)	131
С26—Н26В…О7	0.97	2.45	2.851 (2)	105
C29—H29E…O9 ^v	0.96	2.55	3.504 (3)	172
C28—H28D····Cg1 ^{vi}	0.96	3.25	3.888 (3)	125

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) -*x*+1, *y*+1/2, -*z*+3/2; (iii) *x*, -*y*+3/2, *z*+1/2; (iv) -*x*, *y*+1/2, -*z*+3/2; (v) -*x*, -*y*+1, -*z*+1; (vi) -*x*, *y*-1/2, -*z*+3/2.

Fig. 1

